Obtenção de Modelo Matemático para a Avaliação do Ruído de Tráfego em Belém-Pa

ALENCAR, W.L.'; OLIVEIRA, C. R.*; QUIXABA, G. S.*; BRAGA NETO, G. A. N*; SETÚBAL, F. A. N.*; MELO, G. S. V.*; SOEIRO, N.S.*

*Instituto Federal do Pará, Belém, PA, wilson.alencar@ifpa.edu.br

Resumo

Com a rápida e, muitas vezes desorganizada, expansão das cidades brasileira, a poluição sonora se tornou cada vez mais presente na vida dos cidadãos. Neste cenário, pode-se destacar o aumento do tráfego veicular como fator agravante, tornando necessário o desenvolvimento de estudos para análise de ruído. Assim, tomando como objeto de estudo uma movimentada avenida de Belém-PA, selecionou-se 6 pontos para medição dos níveis estatísticos (L_{10} , L_{50} e L_{90}) e do nível equivalente de pressão sonora (L_{eq}), para o desenvolvimento de modelos matemáticos para predição destes níveis de pressão sonora, a partir da utilização das técnicas estatísticas de regressão linear, eanálise da validade destes modelos para outras vias do município. Concluiu-se que os modelos obtidos apresentaram boa precisão, conseguindo até representar satisfatoriamente outras vias que mantêm um padrão semelhante ao da via em foco.

Palavras-chave: Ruído de tráfego, modelos matemáticos, níveis estatísticos, nível equivalente de ruído

1. Introdução

O Ruído produzido pelo tráfego rodoviário é a fonte mais significativa de poluição sonora ambiental nas cidades. A Organização Mundial de Saúde (WHO, 2010) exalta que a poluição sonora é hoje, depois da poluição da água, o problema ambiental que afeta o maior número de pessoas no mundo.

O ruído é um dos agentes prejudiciais para a cidadania; portanto, muitos países introduziram limites de emissão sonora para veículos e emitiram outras legislações para reduzir ruído do tráfego rodoviário (ABBASPOUR et al, 2006; STEFANO, 2001; MANSOURI et al, 2006).

Para solucionar problemas relacionados ao ruído, torna-se necessária a identificação e caracterização da fonte que o emite, para permitir a modelagem da situação e estabelecer alterações nos componentes de estudo, que se definem como a fonte, o receptor e o meio que une ambos.

O reconhecimento de ruído do tráfego rodoviário como uma das principais fontes de poluição ambiental tem demandado o desenvolvimento de modelos matemáticos que nos permitam prever o nível de pressão sonora especificados em termos de L_{Aeq} , L_{10} , L_{50} e L_{90} , níveis estes quantificados a partir do monitoramento do tráfego rodoviário (STEELE, 2001).

Segundo Bistafa (2011), o nível estatístico L_{90} representa o nível de pressão sonora que foi

excedido em 90% do tempo de medição, o L_{10} é o nível de pressão sonora que foi excedido em 10% do tempo e o L_{50} , o nível de pressão sonora excedido em 50% do tempo de medição. Por outro lado, o nível equivalente L_{Aeq} , é definido como sendo o nível de pressão sonora estacionário, na escala dB(A), que ocorre durante o intervalo de registro e que geraria a mesma energia sonora produzida pelos eventos sonoros registrados.

Vários são os parâmetros de tráfego que apresentam correlação direta ou inversa com a geração dos níveis de ruído de tráfego. Os principais são: o volume de tráfego, a composição do tráfego, a velocidade dos veículos, o gradiente da pista e a distância da fonte ao receptor (GARCÍA & FAUS, 1991;SATTLER, 1999;GOLEBIEWSKI et al., 2003; GOLMOHAMMADI et al., 2007;CALIXTO et al., 2008).

Para o presente trabalho, tem-se como objeto de estudo a cidade de Belém-PA, que por ser formada por corredores de tráfego de intensa movimentação de veículos, onde o número de veículos nas ruas se elevou em 48% (DENATRAN), entre abril dos anos de 2010 e 2015. Todo esse crescimento urbano produz um impacto imediato: engarrafamentos das vias e estresse de motoristas e pedestres, além do aumento vertiginoso do ruído de tráfego, principalmente em horários de maior fluxo. Com esta problemática, revela-se a necessidade de adotar estratégias de estudo e gestão voltadas a melhor qualidade de vida da população.

⁺Grupo de Vibrações e Acústica, Universidade Federal do Pará, Belém-PA, caiane-

ribeiro@hotmail.com,gjsmqgabrielsoares@gmail.com, gerardo-nogueira@hotmail.com,fabioans@ufpa.br, gmelo@ufpa.br, nsoeiro@ufpa.br

Para isto, escolheu-se uma via em sentido único, onde a velocidade máxima permitida é de 50 km/h, sendo realizadas medições dos níveis estatísticos ($L_{90}, L_{50} \, {\rm e} L_{10}$) e do nível equivalente (L_{Aeq}) de pressão sonora, aplicou-se os resultados para a elaboração de modelos de predição dos níveis de ruído do tráfego a partir das características da via e verificou-se a aplicabilidade de tais modelos em outras vias da cidade de Belém, que em alguns casos apresentava características diferentes da via em foco.

2. Metodologia

A partir de uma revisão bibliográfica realizada no que concerne a avaliação do ruído de tráfego, destacou-se entre os vários modelos desenvolvidos nas últimas décadas para a predição dos níveis de ruído de tráfego, os desenvolvidos porBolt *et al.* (1952), por Griffiths e Langdon (1968), Galloway et al. (1969), Burguess (1977), CSTB (1991), Calixto (2002) e Silva e Goldner (2004).

Objetivando dar continuidade ao trabalho desenvolvido por Oliveira et al. (2015), que aplicou na avenida José Malcher os modelos matemáticos acima citados e verificou a eficiência destes neste caso particular, notando a necessidade de desenvolver-se um modelo próprio à esta via e, uma vez que não existem no Brasil normas que determinem os procedimentos para predição dos níveis de ruído de tráfego gerados em rodovias e avenidas, estabeleceu-se a metodologia descrita a seguir que foi utilizada para compor este trabalho.

2.1 Caracterização do Espaço Amostral

Em Belém do Pará, uma das vias mais antigas de tráfego intenso é a avenida Governador José Malcher, que une a principal via de acesso da cidade (Av. Almirante Barroso) ao centro comercial e histórico.

Tendo em vista a existência de muitas variáveis no processo de análise de ruído, tornou-se necessário que na escolha dos locais de medições fossem encontradas grandes semelhanças em relação ao:

- Tipo e condições da pavimentação;
- Trecho considerado: trajetória e inclinação longitudinal;
- Comportamento do tráfego quanto à velocidade e aceleração;
- Características dos arredores da via.

Buscou-se então, utilizar um procedimento que pudesse permitir a melhor caracterização do ruído na via selecionada, a qual apresenta uma geometria diferenciada ao longo de sua extensão. Observando esta característica da avenida optou-se por dividi-la

em seis zonas distintas (cada uma representando um trecho da via que possui características semelhantes) e em cada zona realizou-se as medições em um único ponto.

A avenida e a disposição dos pontos de medição podem ser observadas na Fig.1., sendo a identificação dos pontos conforme descrito abaixo:

- Ponto 1 entre Av. Almirante Barroso e Av. José Bonifácio;
- Ponto 2 entre Tv. Francisco Caldeira Castelo Branco e Tv. 14 de Abril;
- Ponto 3 entre Tv. 09 de Janeiro e Av. Alcindo Cacela:
- Ponto 4 entre Tv. 14 de Março e Av. Generalíssimo Deodoro;
- Ponto 5 Av. Almirante Wandenkolke Av. Visconde de Souza Franco;
- Ponto 6 entre Tv. Rui Barbosa e Tv. Benjamin Constant.

Figura 1: Mapa da Av. José Malcher e disposição dos pontos de medição.

Fonte: Google Maps.

2.2 Medição do Ruído e Caracterização do Tráfego de Veículos

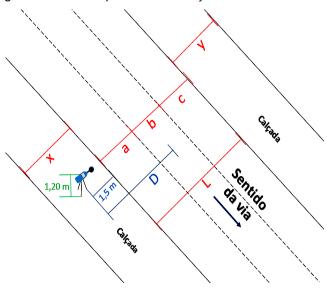
Uma vez definido os padrões de cada zona que compõe a via, as variáveis de entrada no modelo desenvolvido, se resumiram ao fluxo, a composição do tráfego e a geometria da via, e as variáveis de saída, aos níveis de pressão sonora.

Para obter o nível de ruído foi utilizado o medidor do Nível de Pressão Sonora da marca 01dB, modelo Blue Solo, sendo colocado equidistante aos cruzamentos anterior e posterior ao ponto escolhido, como forma de reduzir a captação do ruído ocasionado pela aceleração após a abertura do semáforo, e sempre a 1,5 m do meio fio da via, como ilustra a Fig.2. O medidor foi posicionado a uma distância de1,2 m do solo e a 2 m do limite da propriedade e de quaisquer outras superfícies refletoras, segundo a NBR 10.151 (ABNT, 2000).

Figura 2: Medidor do Nível de Pressão Sonora Blue Solo 1,0 dB posicionado em um ponto de medição.

Fonte: Próprio Autor

Em cada ponto, foram realizadas 90 medições, com duração de 2 min no intervalo das 7 às 19h, compreendendo dias de terça, quarta e quinta-feira. Em todas as medições, o medidor foi ajustado no modo de resposta "fast", sendo os valores medidos expressos em dB(A).


A contagem da quantidade de automóveis, motocicletas, caminhões e ônibus que passavam pelo observador durante os intervalos de tempo de 2 min, foram realizadas por contagem direta dos veículos e transferidas as quantidades para uma planilha junto aos níveis de ruído. Classificamos os veículos em leves e pesados, segundo o CONTRAN (2010),considerando veículos leves correspondendo ciclomotor. motoneta. motocicleta, triciclo, quadriciclo, automóvel utilitário, caminhonete e camioneta; veículos pesados (VP): ônibus, microônibus, caminhão, caminhão-trator, trator de rodas, trator misto, chassi-plataforma, motor-casa, reboque ou semireboque e suas combinações.

Devido ao fato da geometria da via apresentar dimensões diferentes ao longo de sua extensão, a distância do medidor até o centro desta é diferente em cada um dos pontos estudados. A representação das características geométricas dos pontos de medição pode ser representada pela Fig.3 e a Tabela 1, onde:

- x: largura da calçada à direita da via;
- y: largura da calçada à esquerda da via;
- a: largura da faixa 1;
- b: largura da faixa 2;
- c: largura da faixa 3;
- D: distância do receptor ao centro da via

L: largura da via.

Figura 3:Representação das características geométricas dos pontos de medição

Fonte: Autoria própria

Tabela 1: Valores em metros das caracteristicas geometricas dos pontos de medição.

Ponto	х	у	а	b	С	D	L
1	4,10	12,00	5,40	3,50	3,50	7,70	12,40
2	6,40	6,60	5,00	3,00	3,00	7,00	11,00
3	6,40	6,60	4,20	2,50	2,50	6,10	9,20
4	5,40	5,20	2,80	2,55	2,55	5,45	7,90
5	5,80	4,50	3,10	2,70	2,70	5,75	8,50
6	4,40	5,20	3,90	3,60	0,00	4,75	7,50

2.3 Obtenção do Modelo Matemático

A partir de uma análise estatística dos dados das medições realizadas nas seis zonas estudadas, utilizou-se uma metodologia de regressão linear para obtenção dos modelos matemáticos para predição dos níveis estatísticos (L_{10} , L_{50} e L_{90}) e do nível equivalente de ruído. Para isto, obteve-se os coeficientes de correlação entre as variáveis observadas e os níveis de pressão sonora medidos, para escolher quais são as que mais influenciam e empregá-las na elaboração dos modelos. A Tabela apresenta os coeficientes de correlação encontrados.

Tabela 2: Coeficientes de correlação entre as variáveis observadas e os níveis de pressão sonora da Av. José Malcher.

			_					
	VP	VL	L_{eq}	L_{10}	L_{50}	L_{90}	Q/h	%V P
VL	0,2 4		_			_	-	
L_{eq}	0,4 2	0,1 7						
L_{10}	0,4 9	0,1 7	0,9 1					
L_{50}	0,4 5	0,2 0	0,8 1	0,7 7				
L_{90}	0,3 6	0,2 2	0,4 8	0,4 3	0,6 6			
Q/h	0,4 6	0,9 7	0,2 5	0,2 8	0,2 9	0,2 9		
%V P	0,8 5	0,2 5	0,3 3	0,4 0	0,3 6	0,2 7	0,0 3	
d		0,1 8						

Onde VL é a quantidade de veículos leves, VP é a quantidade de veículos pesados, Q é o fluxo veicular por hora, %VP é a porcentagem de veículos pesados e d é a distância do aparelho de medição ao centro da via.

Como busca-se modelos gerais para via, considerou-se os fatores que influenciavam ambos os níveis de pressão sonora e que simplificasse a utilização dos modelos desenvolvidos. Neste caso, destacaram-se Q, %VP e d, os quais foram admitidos como variáveis para os modelos desenvolvidos. Primeiro, ajustou-se a curva de dados considerando o fluxo de veículos por hora e observando como este parâmetro influenciou nos níveis de pressão sonora. Verificou-se, então, a influência do Q e da porcentagem de veículos pesados nos níveis de pressão sonora, notando um aperfeicoamento dos modelos desenvolvidos. Por fim, considerou-se a influência do Q, da %VP e também da d, onde obteve-se os melhores resultados, comparando o níveis de pressão sonora medidos e os calculados pelos modelos, encerrando processo de otimização dos modelos matemáticos.

3. Resultados e Discussões

As médias dos valores coletados durante as medições encontram-se na Tabela 3. As amostras apresentam distribuição padrão (Gausiana), então durante o tratamento de dados, descartou-se aqueles valores muito discrepantes do padrão.

Tabela 3: Dados coletados na Av. José Malcher.

Pont o	Q	%V P	L_{eq}	L ₁₀	L_{50}	L_{90}
1	1970,7	13,4	73	76	70	67
2	1954	15,2	75	79	72	66
3	2140,3	12,5	74	78	71	64
4	2100,3	13	76	80	73	67
5	2259,3	11,9	75	79	71	65
6	1501,3	9,4	73	77	69	61

Assim, seguindo a metodologia descrita acima, obteve-se primeiro os modelos (de uma variável) para predição do L_{eq} , do L_{10} , do L_{50} e do L_{90} , que são apresentados nas equações 01, 02, 03 e 04, respectivamente. Os resultados de todos os modelos matemáticos desenvolvidos neste trabalho são expressos em dB(A).

$$L_{eq} = 71,89 + 0,00144 \cdot Q$$
 [Eq. 01]
 $L_{10} = 74,865 + 0,001581 \cdot Q$ [Eq. 02]
 $L_{50} = 67,79 + 0,001641 \cdot Q$ [Eq. 03]
 $L_{90} = 60,278 + 0,002394 \cdot Q$ [Eq. 04]

Os modelos de duas variáveis para predição dos níveis de ruído da via, são apresentados nas equações 05, 06, 07 e 08.

$$\begin{split} L_{eq} &= 69,711 + 0,001491 \cdot Q + 0,1693 \cdot (\%VP) \\ & \text{[Eq. 05]} \\ L_{10} &= 72,212 + 0,001699 \cdot Q + 0,207 \cdot (\%VP) \\ & \text{[Eq. 06]} \\ L_{50} &= 65,438 + 0,001699 \cdot Q + 0,1824 \cdot (\%VP) \\ & \text{[Eq. 07]} \\ L_{90} &= 57,649 + 0,002455 \cdot Q + 0,2043 \cdot (\%VP) \\ & \text{[Eq. 08]} \end{split}$$

E por fim, os modelos desenvolvidos com três variáveis, para predição do nível equivalente e dos

níveis estatísticos, são apresentados nas equações 09, 10, 11 e 12.

$$\begin{split} L_{eq} &= 71,17 + 0,001702 \cdot Q + 0,1861 \cdot (\%VP) - \\ &\quad 0,0893 \cdot d & \text{[Eq. 09]} \\ L_{10} &= 73,828 + 0,001870 \cdot Q + 0,2255 \cdot (\%VP) - \\ &\quad 0,3779 \cdot d & \text{[Eq. 10]} \\ L_{50} &= 65,815 + 0,001755 \cdot Q + 0,1868 \cdot (\%VP) - \\ &\quad 0,0893 \cdot d & \text{[Eq. 11]} \\ L_{90} &= 52,425 + 0,001704 \cdot Q + 0,1444 \cdot (\%VP) + \\ &\quad 1,224 \cdot d & \text{[Eq. 12]} \end{split}$$

Os gráficos abaixo (Fig. 4, Fig. 5, Fig. 6 e Fig. 7), ilustram as comparações entres os valores medidos no primeiro ponto da Av. José Malcher, do nível equivalente e dos níveis estatíticos de pressão sonora, com os resultados obtidos através dos modelos matemáticos desenvolvidos para uma, duas e três variáveis.

Figura 4: Distribuição do nível equivalente de pressão sonora (L_eq) no ponto de medição 1 da Av. José Malcher. Fonte: Autoria própria.

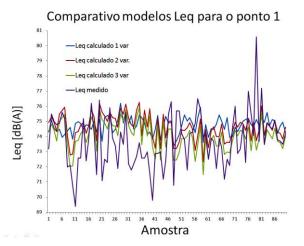


Figura 5: Distribuição do nível estatístico L₁₀ no ponto de medição 1 da Av. José Malcher.Fonte: Autoria própria.

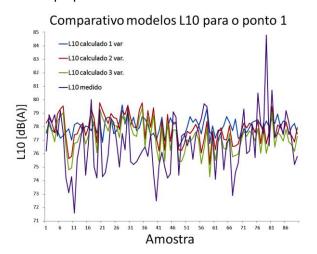


Figura 6: Distribuição do nível estatístico L₅₀ no ponto de medição 1 da Av. José Malcher.Fonte: Autoria própria.

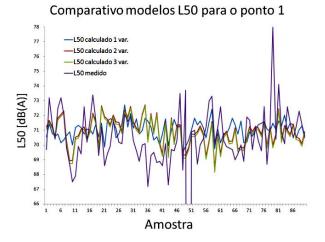
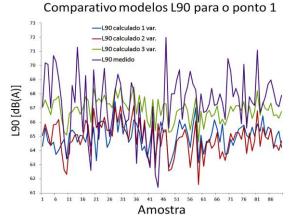



Figura 7: Distribuição do nível estatístico L₉₀ no ponto de medição 1 da Av. José Malcher. Fonte: Autoria própria.

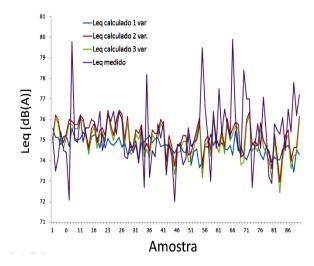
A Média e o Desvio Padrão dasDiferenças do valor medido pelo valor calculado para cada modelo no ponto 1 encontram-se na Tabela 4.

Na predição do L_{eq} pode-se notar maior precisão utilizando o modelo de três variáveis, visto que o nível equivalente de pressão sonora é influenciado diretamente tanto pelo fluxo de veículos, quanto pela composição do tráfego e a distância do medidor até o centro da via, visto que este tem como função representar a energia sonora produzida pelo evento e estes são os fatores que apresentam maiores coeficientes de correlação.

Na predição do L_{10} , observa-se que o modelo desenvolvido com três variáveis continua sendo o mais preciso, visto que este nível estatístico ressalta os valores de pico e o fator que mais colabora com a elevação dos níveis de pressão sonora são a porcentagem de veículos pesados e o fluxo veicular, enquanto a distância do centro da via até o medido colabora com a melhor representação da situação

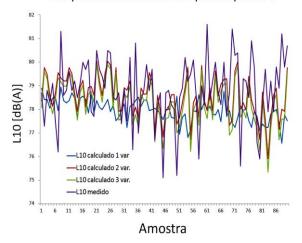
Tabela 4: Média e Desvio Padrão dasDiferenças do valor medido pelo valor calculado no ponto 1

Compa	Comparação dos Valores no Ponto 1				
	Média dasDiferenças do valor medido pelo valor calculado	Desvio Padrão das Diferenças do valor medido pelo valor calculado			
Leq 1 var.	-1,01847	1,733643			
Leq 2 var.	-0,89713	1,778065			
Leq 3 var.	-0,33259	1,798337			
L10 1 var.	-1,23228	2,005975			
L10 2 var.	-1,08705	2,022231			
L10 3 var.	-0,46329	2,040694			
L50 1 var.	-0,12168	0,671207			
L50 2 var.	0,364952	0,869252			
L50 3 var.	0,519792	0,875187			
L90 1 var.	2,775173	0,61647			
L90 2 var.	3,322878	0,838209			
L90 3 var.	1,219613	0,757644			


Na predição do ${\cal L}_{50}$, observa-se que o modelo desenvolvido com uma variável está sendo mais preciso.

O gráfico dos valores obtidos para o L_{90} confirma o quanto a otimização do modelo desenvolvido era necessária, visto que, em todos os casos, o modelo mais preciso foi o de três variáveis. Neste caso, a variável d não interfere diminuindo o nível de pressão sonora calculado, uma vez que o L_{90} representa o nível de ruído predominante, que tende a permanecer constante.

Para o segundo ponto de medição da Av. José Malcher, temos os resultados (medidos e calculados) dos níveis de ruído apresentados nos gráficos abaixo (Fig. 8, Fig. 9, Fig. 10 e Fig. 11), para questão de comparação.


Figura 8: Distribuição do nível equivalente de pressão sonora ($L_{\rm eq}$) no ponto de medição 2 da Av. José Malcher.Fonte: Autoria própria.

Comparativo modelos Leq para o ponto 2

Figura 9: Distribuição do nível estatístico L_{10} no ponto de medição 2 da Av. José Malcher.Fonte: Autoria própria.

Comparativo modelos L10 para o ponto 2

Figura 10: Distribuição do nível estatístico L_{50} no ponto de medição 2 da Av. José Malcher.Fonte: Autoria própria.

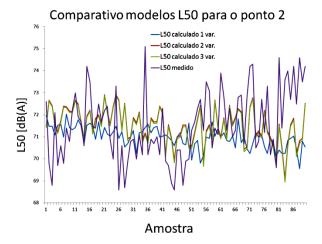
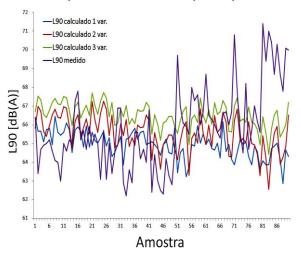
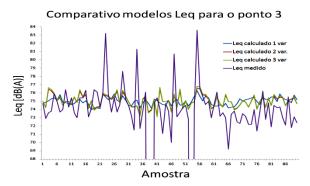



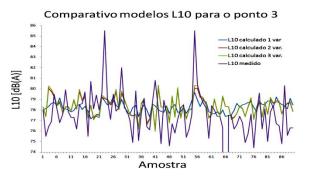
Figura 11: Distribuição do nível estatístico L₉₀ no ponto de medição 2 da Av. José Malcher.Fonte: Autoria própria.

Comparativo modelos L90 para o ponto 2

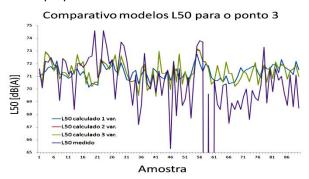
A Média e o Desvio Padrão dasDiferenças do valor medido pelo valor calculado para cada modelo no ponto 2 encontram-se na Tabela 5.


Apesar de algumas características da via se alterarem de um ponto a outro, podemos notar que os modelos matemáticos desenvolvidos continuam apresentando boa precisão, principalmente os modelos com duas e três variáveis, visto que a análise de ruído é influenciada por vários fatores e considerou-se neste caso os fatores predominantes.

Como discutido acima, continuaremos a seguir o mesmo padrão ao analisarmos os demais pontos, como podemos notar nos gráficos a seguir no terceiro (Fig. 12, Fig. 13, Fig. 14 e Fig. 15), quarto (Fig.16, Fig.17, Fig.18 e Fig.19), quinto (Fig.20, Fig.21, Fig.22 e Fig.23) e sexto (Fig.24, Fig.25, Fig.26 e Fif.27) ponto de medição.


Tabela 5: Média e Desvio Padrão dasDiferenças do valor medido pelo valor calculado no ponto 2

Comparação dos Valores no Ponto 2				
		Média das Diferenças do valor medido pelo valor calculado	Desvio Padrão das Diferenças do valor medido pelo valor calculado	
Leq var.	1	1,2144	1,614614	
Leq var.	2	0,52374	1,557079	
Leq var.	3	0,739816	1,585905	
L10 var.	1	1,491185	1,481213	
L10 var.	2	0,644719	1,346972	
L10 var.	3	0,883663	1,377442	
L50 var.	1	2,139285	1,70652	
L50 var.	2	1,393119	1,688254	
L50 var.	3	1,451002	1,69645	
L90 var.	1	2,85869	2,476265	
L90 var.	2	2,025924	2,553361	
L90 var.	3	1,247439	2,403287	


Figura 12: Distribuição do nível equivalente de pressão sonora ($L_{\rm eq}$) no ponto de medição 3 da Av. José Malcher. Fonte: Autoria própria.

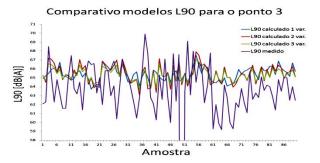

Figura 13: Distribuição do nível estatístico L_{10} no ponto de medição 3 da Av. José Malcher.Fonte: Autoria própria.

Figura 14: Distribuição do nível estatístico L_{50} no ponto de medição 3 da Av. José Malcher.Fonte: Autoria própria.

Figura 15: Distribuição do nível estatístico L_{90} no ponto de medição 3 da Av. José Malcher.Fonte: Autoria própria.

A Média e o Desvio Padrão dasDiferenças do valor medido pelo valor calculado para cada modelo no ponto 3 encontram-se na Tabela 6.

Tabela 6: Média e Desvio Padrão dasDiferenças do valor medido pelo valor calculado no ponto 3

Comparação dos Valores no Ponto 3				
		Média das Diferenças do valor medido pelo valor calculado	Desvio Padrão das Diferenças do valor medido pelo valor calculado	
Leq var.	1	-1,3856	1,962363	
Leq var.	2	-1,26621	2,120801	
Leq var.	3	-1,27773	2,112375	
L10 var.	1	-0,91485	1,956476	
L10 var.	2	-0,9275	1,837292	
L10 var.	3	2,735486	1,838628	
L50 var.	1	-1,21072	1,790933	
L50 var.	2	-1,08415	1,59513	
L50 var.	3	-1,08559	1,593511	
L90 var.	1	-3,04131	2,464316	
L90 var.	2	-2,89656	2,359231	
L90 var.	3	-2,86005	2,325269	

Observando os gráficos obtidos no ponto 3, é perceptível alguns resultados sofrerem uma variação considerável entre os valores medidos e os valores calculados. Estas amostras podem se caracterizar pelo falo de ter apresentado no ponto em questão, momentos de congestionamento durante a medição do ruído. Apesar dessas variações, os modelos obtidos apresentam uma satisfatória confiabilidade.

Figura 16: Distribuição do nível equivalente de pressão sonora (L_{ea}) no ponto de medição 4 da Av. José Malcher. Fonte: Autoria própria.

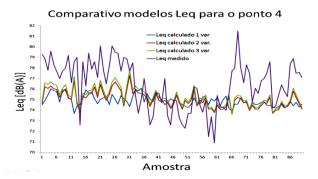


Figura 17: Distribuição do nível estatístico L₁₀ no ponto de medição 4 da Av. José Malcher.Fonte: Autoria própria.

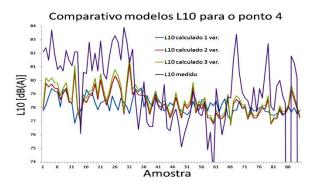


Figura 18: Distribuição do nível estatístico L₅₀ no ponto de medição 4 da Av. José Malcher.Fonte: Autoria própria.

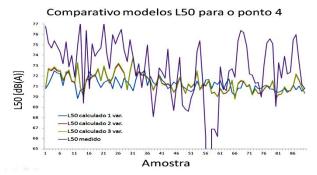
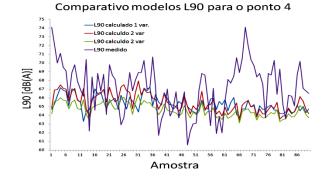
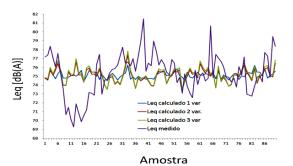



Figura 19: Distribuição do nível estatístico L₉₀ no ponto de medição 4 da Av. José Malcher.Fonte: Autoria própria.

A Média e o Desvio Padrão dasDiferenças do valor medido pelo valor calculado para cada modelo no ponto 4 encontram-se na Tabela 7.


Tabela 7: Média e Desvio Padrão dasDiferenças do valor medido pelo valor calculado no ponto 4

Comparação dosValores no Ponto 4				
		Média das Diferenças do valor medido pelo valor calculado	Desvio Padrão das Diferenças do valor medido pelo valor calculado	
Leq var.	1	3,6532	1,586182	
Leq var.	2	3,808748	1,17577	
Leq var.	3	3,651098	1,139412	
L10 var.	1	3,165885	1,662953	
L10 var.	2	2,836938	1,890716	
L10 var.	3	2,735486	1,747242	
L50 var.	1	2,982355	4,277452	
L50 var.	2	3,148699	3,835347	
L50 var.	3	3,109386	3,825841	
L90 var.	1	5,60507	5,424796	
L90 var.	2	5,793304	4,929526	
L90 var.	3	6,353525	5,059186	

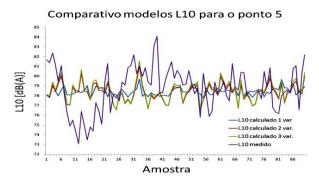
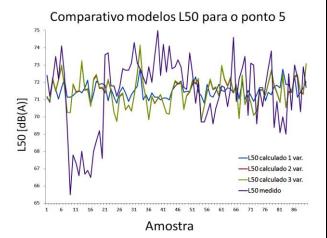

O ponto 4 apresentou uma elevada variação entre os valores medidos e os valores calculados, onde podemos caracterizar o ponto em questão, como sendo o ponto da pesquisa, em que o fluxo apresentou maior lentidão e concentração de veículos. O ponto apresenta um maior enclausuramento, devido a uma grande quantidade de árvores e edificações, tornando o local mais reverberante. Os modelos obtidos para a via em geral, não conseguem representar tão precisamente esta singularidade.

Figura 20: Distribuição do nível equivalente de pressão sonora ($L_{\rm eq}$) no ponto de medição 5 da Av. José Malcher.Fonte: Autoria própria.


Comparativo modelos Leq para o ponto 5

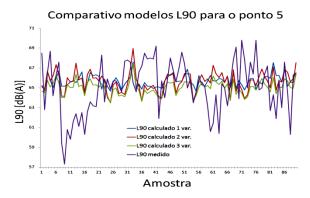

Figura 21: Distribuição do nível estatístico L_{10} no ponto de medição 5 da Av. José Malcher.Fonte: Autoria própria.

Figura 22: Distribuição do nível estatístico L_{50} no ponto de medição 5 da Av. José Malcher.Fonte: Autoria própria.

Figura 23: Distribuição do nível estatístico L_{90} no ponto de medição 5 da Av. José Malcher.Fonte: Autoria própria.

Tabela 8: Média e Desvio Padrão dasDiferenças do valor medido pelo valor calculado no ponto 5

Comparação dos Valores no Ponto 5				
		Média das Diferenças do valor medido pelo valor calculado	Desvio Padrão das Diferenças do valor medido pelo valor calculado	
Leq var.	1	2,562	0,329229	
Leq var.	2	2,164522	0,389205	
Leq var.	3	1,938694	0,534763	
L10 var.	1	3,409175	0,216594	
L10 var.	2	2,922092	1,093438	
L10 var.	3	2,673359	1,253238	
L50 var.	1	0,444675	1,086759	
L50 var.	2	0,013736	1,861885	
L50 var.	3	-0,04387	1,900273	
L90 var.	1	1,65595	2,277549	
L90 var.	2	1,177091	3,14431	
L90 var.	3	1,978796	2,6258	

A Média e o Desvio Padrão dasDiferenças do valor medido pelo valor calculado para cada modelo no ponto 5 encontram-se na Tabela 8.

Observando os gráficos obtidos no ponto 5, é perceptível algumas distorções entre os valores medidos e os valores calculados, estas amostras podem se caracterizar pelo falo de ter apresentado ponto no em questão, momentos congestionamento durante a medição do ruído. Entretanto, os modelos obtidos apresentam resultados satisfatórios, com exceção do modelo do L10 com uma variável.

Figura 24: Distribuição do nível equivalente de pressão sonora (L_{eq}) no ponto de medição 6 da Av. José Malcher. Fonte: Autoria própria.

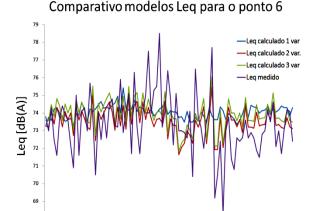


Figura 25: Distribuição do nível estatístico L₁₀ no ponto de medição 6 da Av. José Malcher.Fonte: Autoria própria.

Amostra

11 16 21 26

41 46 51 56 61 66 71 76 81

Comparativo modelos L10 para o ponto 6

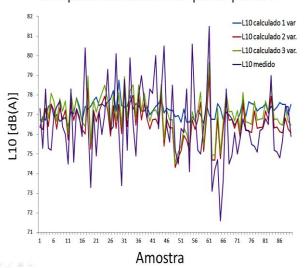


Figura 26: Distribuição do nível estatístico L₅₀ no ponto de medição 6 da Av. José Malcher.Fonte: Autoria própria.

Comparativo modelos L50 para o ponto 6

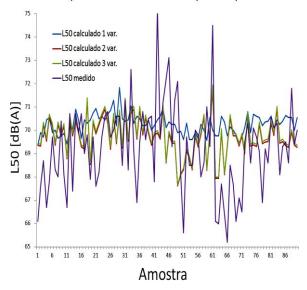
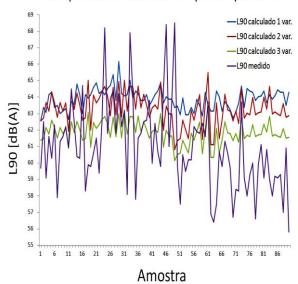



Figura 27: Distribuição do nível estatístico L₉₀ no ponto de medição 6 da Av. José Malcher.Fonte: Autoria própria.

Comparativo modelos L90 para o ponto 6

A Média e o Desvio Padrão dasDiferenças do valor medido pelo valor calculado para cada modelo no ponto 6 encontram-se na Tabela 9.

modelos obtidos apresentam bastantes satisfatório para o ponto 6, com exceção os modelos do L50.

Tabela 9: Média e Desvio Padrão dasDiferenças do valor medido pelo valor calculado no ponto 6

Comparação dos Valores no Ponto 6				
		Média das Diferenças do valor medido pelo valor calculado	Desvio Padrão das Diferenças do valor medido pelo valor calculado	
Leq var.	1	0,5276	1,723078	
Leq var.	2	0,54139	0,893949	
Leq var.	3	0,20973	0,916519	
L10 var.	1	0,91724	1,794863	
L10 var.	2	0,92706	0,778884	
L10 var.	3	0,5586	0,803051	
L50 var.	1	-3,26536	1,922256	
L50 var.	2	-3,24904	2,813986	
L50 var.	3	-3,33295	2,807699	
L90 var.	1	-2,87624	3,976542	
L90 var.	2	-2,85955	2,975728	
L90 var.	3	-1,67384	2,895921	

4. Conclusões

Nesse trabalho foram obtidos modelos matemáticos para a predição do nível de pressão sonora e dos níveis estatísticos, com uma, duas e três variáveis, a partir utilização das técnicas estatísticas de regressão linear. Os modelos obtidos produzem resultados suficientemente próximos aos valoresmedidos.

Os modelos para o cálculo dos níveis L_{eq} e L_{10} são mais precisos que os modelos para o cálculo dos níveis L_{50} e principalmente L_{90} . O resultado já era esperado pois o fluxo de veículos não é absolutamente contínuo e, portanto, a influência de outras fontes de ruídos é maior sobre o L_{50} e o L_{90} do que para L_{10} e L_{eq} .

Os modelos que consideram três variáveis, ou seja, o fluxo de veículos, o percentual de veículos pesados e a distância do observador ao centro da via, predizem melhor os níveis do ruído do tráfego do que os modelos que consideram somente o fluxo de veículos e o fluxo de veículos com o percentual de veículos pesados.

Apesar dos resultados satisfatórios, a via estudada apresentou algumas singularidades referentes a tráfego veicular e a paisagem apresentada ao longo da mesma. Ao longo da via, ocorre um aumento na quantidade de árvores e edificações, além do estreitamento da via, o que a torna ainda mais reverberante, principalmente no ponto 4.

Segundo Cowan (1994), o ruído é perceptível ao ouvido humano em variações sonoras de pelo menos 3 dB, e, se tomado como referência o ruído de fundo, esse incremento começa a causar pequenos incômodos às pessoas (MURGEL, 2007). Diante disso, parece razoável admitir nas análises, diferença da ordem de 3 dB(A) entre nível de ruído medido e calculado.

Verificou-se nas medições, que em média, o nível equivalente de emissão do ruído de tráfego medidos na avenida, ultrapassou os limites definidos pela lei n° 7990 de 10 de janeiro de 2000, que limita em 70 dB, em horário diurno e 60 dB, em horário noturno. Com o levantamento feito, é possível prever que a população que reside ou trabalha nessas áreas, sofre os efeitos deste ruído, o que representa riscos à saúde e prejuízo a qualidade de vida. A partir deste problema, deve-se tomar ações para o controle do ruído.

Referências

- [1] ABBASPOUR, M.; GOLMOHAMMADI, R.; NASSIRI, P.; MAHJUB, H.An Investigation on Time-Interval Optimization of Traffic Noise Measurement. Journal of Low Frequency Noise Vibration and Active Control 25(4), 267-273, 2006.
- [2] ASSOCIAÇÃO BRASILEIRA DE NORMAS TECNICAS. **NBR 10151**: Acústica Avaliação do ruído em áreas habitadas, visando o conforto da comunidade Procedimento: Referências: Elaboração. Rio de Janeiro: ABNT, 2000.
- [3] BELÉM. Prefeitura Municipal. Lei Municipal no 7.990, de 10 de janeiro de 2000. Dispõe sobre o controle e o combate à poluição sonora no âmbito do Município de Belém.. Disponível em:

- http://www.belem.pa.gov.br/semma/paginas/lei 79 90.htm>. Acesso em: 16 outubro de 2015.
- [4] BISTAFA, S. R. Acústica Aplicada ao Controle de Ruído. São Paulo, Bluncher 2011.
- [5] BOLT, R. H.; BERANEK, L.; NEWMAN, R.Handbook of Acoustic Noise Control. WADC technical report: Wright Air Development Center, 1952.
- [6] BURGESS, M. A. Noise Prediction for Urban Traffic Conditions - Related to Measurements in the Sydney Metropolitan Area. Applied Acoustic10, 001-007, 1977,
- [7] CALIXTO A.; PULCIDES, C.; ZANNIN, P.H. T. Evaluation of transportation noise in urbanized areas A case study. Archives of Acoustics 33(2), 151-164, 2008.
- [8] CALIXTO, A.O Ruído gerado pelo Tráfego de Veículos em 'Rodovias-Grandes Avenidas', Situadas Dentro do Perímetro Urbano de Curitiba, Analisados Sobre Parâmetros Acústicos Objetivos e seu Impacto Ambiental. 125 p. Dissertação (Mestrado em Engenharia Mecânica), Universidade Federal do Paraná, Curitiba, 2002.
- CONSELHO DE TRÂNSITO NACIONAL (CONTRAN). Resolução Nº 340 de 25 de fevereiro de 2010. Referenda a Deliberação 86 que altera a Resolução CONTRAN nº 146/03, estabelecendo critérios para informação complementar à placa R-19. Ministério das Cidades. Brasília: 2010
- [10] COWAN, J. P. Handbook of environmental acoustics. John Wiley & Sons, Inc.: New York, 283 p., 1994
- [11] CSTB (Centre Scientifique et Technique du Batiment). Etude théorique et expérimentale de la propagation acoustique. Revue d'Acoustique, n.70, 1991.
- [12] (Departamento DENATRAN Nacionalde Trânsito). Frota de veículos. 2015. Disponível em:<http://www.denatran.gov.br/frota.htm>.Acessoe m: 18/05/2015.
- [13] GALLOWAY, W. J.; CLARK, W. E.; KERRICK, J. S. Urban Highway Noise: Measurement, Simulation and Mixed Reactions. NCHRP report 78, 1969.
- [14] GARCÍA A.; FAUS L.J. Statistical Analysis of Urban Noise Levels Areas. Applied in **Acoustics**(91), 227-247, 1991.
- GOLEBIEWSKI, R.; MAKAREWICK, R.; NOWAK, M.; PREIS, A.Traffic Noise Reduction due the porous Road Surface. Applied Acoustics 64, 481-494, 2003.
- [16] GOLMOHAMMADI, R.; ABBASPOUR, M.; NASSIRI, P.; MAHJUB, H. Road Traffic Noise Model. J Res Health Sci 7(1), 13-17, 2007.
- [17] GRIFFITHS, I. D.; LANGDON, F. J.Subjective Response to road traffic noise. Journal of Sound and Vibration 8, 16-32, 1968.
- [18] MASOURI, N. A.; POUR MAHABADIAN, M.;

- GHASEMKHANI, M.Road Traffic Noise in Downtown Area of Tehran.Iranian Journal Of Environmental Health Science And Engineering 3(4), 261-266, 2006.
- [19] MURGEL, Fundamentos de Acústica Ambiental. Editora SENAC, São Paulo, 2007.
- [20] OLIVEIRA, C. R.; ALENCAR, W. L. M.; QUIXABA, G. S.; BRAGA NETO, G. A. N.; SANTOS, W. S.; SOEIRO, N. S.Application of mathematical models in the analysis of traffic noise in the city of Belém, Pará, Brazil.Proceedings.Anaisdo 23rd ABCM International Congress of Mechanical Engineering, 2015. Rio de Janeiro: Associação Brasileira de Engenharia e Ciências Mecânicas, 2015.
- [21] SATTLER, M. A. Urban Noise Survey for the City Porto Alegre, Brazil. Proceedings.137th Meeting of the Acoustical Society of America -FórumAcusticum, Berlim, Germany, 1999.
- [22] SILVA, G. C.; GOLDNER, L. G. Modelos dePredição dos Níveis de Ruído e Monóxido de Carbono Gerados pelo Tráfego: o Caso de Florianópolis – SC. Proceedings. **18th Congresso** Pesquisa e EnsinoemTransportes ANPET2004. Florianópolis. Brazil. 2004.
- [23] STEELE, C. A. Critical Review of Some Traffic Noise Prediction Models. Applied Acoustic 62, 271-287, 2001.
- [24] STEFANO, R.;DANATO, D.; MORRI, B.A. Statistical Model for Predicting Road Traffic Noise on Poisson Type Traffic Flow.**Noise Control** EngineeringJournal 49(3), 137-143, 2001.
- [25] WHO (World Health Organization).International Society of Hypertension Guidelines for the Management of Hypertension, Guidelines Subcommittee, 2010.