In situ acoustic impedance measurement through microphone arrays and sparsity promoting algorithm

Authors

  • Thiago C. Malaguetta Engenharia Elétrica e de Computação, Universidade Estadual de Campinas
  • Johannes W. Farias Engenharia Elétrica e de Computação, Universidade Estadual de Campinas
  • Eric Brandão Engenharia Acústica, Universidade Federal de Santa Maria
  • Bruno Sanches Masiero Engenharia Elétrica e de Computação, Universidade Estadual de Campinas https://orcid.org/0000-0002-2246-4450

DOI:

https://doi.org/10.55753/aev.v33e50.86

Keywords:

acoustic impedance, in situ meaurements, microphone arrays, sparsity promoting algorithms

Abstract

The acoustic behavior of classrooms, theaters, cars and airplanes is of paramount importance and subject to constant improvement. In order to simulate and predict the behavior of these objects or spaces it is necessary to know their geometry and the acoustic impedance of the building materials used. This work aims to characterize the acoustic impedance of construction materials using a microphone array and array processing techniques with sparsity promoting regularization. A computational model was developed to simulate the reflection of a wave by an infinite porous material and to evaluate the viability of the proposed technique. It was verified that the proposed sparsity promoting techniques were able to locate and segregate the direct sound of the reflected sound, for later calculation of the acoustic impedance. The results indicate that the method is viable for high frequencies but presents an overestimation of the impedance values when compared to the theoretical values for medium and low frequencies.

References

VORLÄNDER, M. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. [S.l.]: Springer, 2007.

ISO–10534-2. Acoustics determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method. 1998.

ISO–354. Measurement of sound absorption in a reverberation room Title. 1985.

BRANDÃO, E. Análise teórica e experimental do processo de medição in situ da impedância acústica. Tese (Doutorado) — Universidade Federal de Santa Catarina, Florianópolis, Brasil, 2011.

TIJS, E.; BREE, H. E. D.; BRANDÃO, E. Large scale in situ acoustic reflection measurements in a theatre. In: Proc. of Nag/Daga. [S.l.: s.n.], 2009. p. 549–552.

TIJS, E.; BREE, H. E. D.; BRANDÃO, E. “In situ PU surface impedance measurements for quality control in an assembly line,”. Proceedings of SAE international, 2009. doi: 10.4271/2009-01-2142 DOI: https://doi.org/10.4271/2009-01-2142

BRANDÃO, E.; LENZI, A.; PAUL, S. A review of the in situ impedance and sound absorption measurement techniques. Acta Acustica united with Acustica, v. 101, n. 3, p. 443–463, 2015. DOI: https://doi.org/10.3813/AAA.918840

CHAMPOUX, Y.; BERRY, A.; AMEDÍN, C. K. Acoustical characterization of absorbing porous materials through transmission measurements in a free field. v. 102, n. 4, p. 1982–1994, 1997. doi: 10.1121/1.419689 DOI: https://doi.org/10.1121/1.419689

GARAI, M. Measurement of the Sound-Absorption Coefficient In Situ . The Reflection Method Using Periodic Pseudo- random Sequences of Maximum Length. Applied Acoustics, v. 39, p. 119–139, 1993. doi: 10.1016/0003-682X(93)90032-2 DOI: https://doi.org/10.1016/0003-682X(93)90032-2

MOMMERTZ, E. Angle-dependent in-situ measurements of reflection coefficients using a subtraction technique. Applied Acoustics, v. 46, n. 3, p. 251–263, 1995. doi: 10.1016/0003-682X(95)00027-7 DOI: https://doi.org/10.1016/0003-682X(95)00027-7

DUCOURNEAU, J.; PLANEAU, V.; CHATILLON, J.; NEJADE, A. Measurement of sound absorption coefficients of flat surfaces in a workshop. Applied Acoustics, v. 70, n. 5, p. 710–721, 2009. doi: 10.1016/j.apacoust.2008.09.001 DOI: https://doi.org/10.1016/j.apacoust.2008.09.001

OTTINK, M.; BRUNSKOG, J.; JEONG, C.-H.; FERNANDEZ-GRANDE, E.; TROJGAARD, P.; TIANA-ROIG, E. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers. The Journal of the Acoustical Society of America, v. 139, n. 1, p. 41–52, 2016. doi: 10.1121/1.4938225 DOI: https://doi.org/10.1121/1.4938225

RICHARD, A.; FERNANDEZ-GRANDE, E.; BRUNSKOG, J.; JEONG, C.-h. Impedance estimation of a finite absorber based on spherical array measurements. In: Proc. 22nd International Congress on Acoustics. [S.l.: s.n.], 2016.

van TREES, H. L. Optimum array processing: Part IV of detection, estimation, and modulation theory. [S.l.]: John Wiley & Sons, 2004. ISBN: 978-0-471-46383-2

XU, L.; ZHAO, K.; LI, J.; STOICA, P. Wideband source localization using sparse learning via iterative minimization. Signal Processing, v. 93, n. 12, p. 3504 – 3514, 2013. doi: 10.1016/j.sigpro.2013.04.005 DOI: https://doi.org/10.1016/j.sigpro.2013.04.005

LI, J.; ZHENG, D.; STOICA, P. Angle and waveform estimation via relax. IEEE transactions on aerospace and electronic systems, IEEE, v. 33, n. 3, p. 1077–1087, 1997. doi: 10.1109/7.599338 DOI: https://doi.org/10.1109/7.599338

BRANDÃO, E. Acústica de Salas: Projeto e Modelagem. 1. ed. São Paulo: Blucher, 2016.

NASCIMENTO, V. H.; MASIERO, B. S.; RIBEIRO, F. P. Acoustic imaging using the Kronecker array transform. In: COELHO, R. F.; NASCIMENTO, V. H.; QUEIROZ, R. L. de; ROMANO, J. M. T.; CAVALCANTE, C. C. (Ed.). Signals and Images: Advances and Results in Speech, Estimation, Compression, Recognition, Filtering, and Processing. [S.l.]: CRC Press, 2015. cap. 6, p. 153–178. DOI: https://doi.org/10.1201/b19385-9

LAI, C. C.; NORDHOLM, S. E.; LEUNG, Y. H. A Study Into the Design of Steerable Microphone Arrays. [S.l.]: Springer, 2017. doi: 10.1007/978-981-10-1691-2 DOI: https://doi.org/10.1007/978-981-10-1691-2

TAN, X.; ROBERTS, W.; LI, J.; STOICA, P. Sparse learning via iterative minimization with application to mimo radar imaging. IEEE Transactions on Signal Processing, IEEE, v. 59, n. 3, p. 1088–1101, 2011. doi: 10.1109/TSP.2010.2096218 DOI: https://doi.org/10.1109/TSP.2010.2096218

STOICA, P.; SELÉN, Y. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher. IEEE Signal Processing Magazine, IEEE, v. 21, n. 1, p. 112–114, 2004. doi: 10.1109/MSP.2004.1267055 DOI: https://doi.org/10.1109/MSP.2004.1267055

ALLARD, J. F.; CHAMPOUX, Y.; NICOLAS, J. Impedance Measurement At Oblique Incidence and Low Frequencies. Journal of the Acoustical Society of America, v. 86, n. 2, p. 766–770, 2014. doi: 10.1121/1.398198 DOI: https://doi.org/10.1121/1.398198

VERTATSCHITSCH, E.; HAYKIN, S. Nonredundant arrays. Proceedings of the IEEE, v. 74, n. 1, p. 217–217, Jan 1986. ISSN 0018-9219. doi: 10.1109/PROC.1986.13435 DOI: https://doi.org/10.1109/PROC.1986.13435

Capa - Medição in situ de impedância acústica com arranjo de microfones e algoritmos promotores de esparsidade (Acústica e Vibrações 50)

Published

2018-12-28

How to Cite

C. MALAGUETTA, T.; W. FARIAS, J.; BRANDÃO, E.; MASIERO, B. S. In situ acoustic impedance measurement through microphone arrays and sparsity promoting algorithm. Acoustics and Vibrations (Acústica e Vibrações), [S. l.], v. 33, n. 50, p. 53–64, 2018. DOI: 10.55753/aev.v33e50.86. Disponível em: https://acustica.emnuvens.com.br/acustica/article/view/aev50_impedancia. Acesso em: 23 nov. 2024.

Most read articles by the same author(s)