Otimização de um metamaterial acústico labiríntico para absorção sonora na faixa de frequências de 100–300 Hz

Autores/as

  • Gildean Nascimento Almeida Programa de Pós-graduação em Engenharia Mecânica, Laboratório de Vibrações e Acústica (LVA), Universidade Federal de Santa Catarina, Campus Florianópolis, SC
  • Erasmo Felipe Vergara Programa de Pós-graduação em Engenharia Mecânica, Laboratório de Vibrações e Acústica (LVA), Universidade Federal de Santa Catarina, Campus Florianópolis, SC
  • Leandro Rodrigues Barbosa Programa de Pós-graduação em Engenharia Mecânica, Laboratório de Vibrações e Acústica (LVA), Universidade Federal de Santa Catarina, Campus Florianópolis, SC https://orcid.org/0000-0002-3792-2928
  • Linconl Cézar Bastos Farias Programa de Pós-graduação em Engenharia Mecânica, Laboratório de Vibrações e Acústica (LVA), Universidade Federal de Santa Catarina, Campus Florianópolis, SC

DOI:

https://doi.org/10.55753/aev.v35e52.36

Palabras clave:

absorção sonora, metamaterial acústico, otimização paramétrica

Resumen

O controle da energia sonora  em ambientes fechados ao longo de todo espectro de frequência é um fator importantíssimo, especialmente quando o conforto acústico é uma necessidade do projeto arquitetônico do ambiente. Este controle é realizado pelo tratamento acústico, sendo o coeficiente de absorção sonora um parâmetro físico do material acústico utilizado. Todavia, os materiais acústicos absorvedores convencionais (e.g. espumas e fibras) apresentam limitações geométricas e operacionais no controle da energia sonora relativa a região das baixas frequências (100–600 Hz). Recentemente este controle ganhou notabilidade com o advento dos metamateriais acústicos (MMA). Neste artigo apresentamos  uma avaliação teórica, numérica e experimental de um instituído metamaterial absorvedor de baixas frequências. O metamaterial acústico fundamenta-se  na teoria dos painéis  micro perfurados (MPP) e no conceito de espaços enrolados, os quais se assemelham a um labirinto. Os efeitos de atrito viscoso e difusão térmica, importantes na descrição analítica do modelo são corroborados por meio  de uma  análise numérica utilizando o método dos elementos finitos  (MEF). O  coeficiente de absorção sonora do metamaterial  é  maximizado por um método heurístico para a região de frequência entre (100–300 Hz). Uma amostra do metamaterial foi fabricada pela tecnologia de impressão 3D e avaliada em um aparato de tubo de impedância. Os resultados obtidos revelam   uma absorção sonora  de 0,97%  em  216 Hz com uma largura de banda relativa  de  49,0%.  É demonstrado que o metamaterial acústico  apresenta uma escala de sub comprimento de onda, uma vez que sua espessura total é de 0,026λ.

Citas

BA, Amadou; LAVIE, Antoine; LEBLANC, Alexandre. Soft 3d printed membrane type-acoustic metamaterials. In: Proceedings of the 23rd International Congress on Sound & Vibration. [S.l.: s.n.], 2016.

PENG, Hao; PAI, P Frank. Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. International Journal of Mechanical Sciences, Elsevier, v. 89, p. 350–361, 2014. doi: 10.1016/j.ijmecsci.2014.09.018. DOI: https://doi.org/10.1016/j.ijmecsci.2014.09.018

ALLARD, J-F; DAIGLE, Gilles. Propagation of sound in porous media: Modeling sound absorbing materials. Acoustical Society of America, 1994. doi: 10.1121/1.409801. DOI: https://doi.org/10.1121/1.409801

BIES, David H; HANSEN, Colin H; CAMPBELL, Richard H. Engineering noise control. [S.l.]: Acoustical Society of America, 1996. doi: 10.1121/1.416038. DOI: https://doi.org/10.1121/1.416038

WANG, Yang; ZHAO, Honggang; YANG, Haibin; ZHONG, Jie; ZHAO, Dan; LU, Zhongliang; WEN, Jihong. A tunable sound-absorbing metamaterial based on coiled-up space. Journal of Applied Physics, AIP Publishing LLC, v. 123, n. 18, p. 185109, 2018. doi: 10.1063/1.5026022. DOI: https://doi.org/10.1063/1.5026022

ZHAO, Honggang; WANG, Yang; WEN, Jihong; LAM, Yiu Wai; UMNOVA, Olga. A slim subwavelength absorber based on coupled microslits. Applied Acoustics, Elsevier, v. 142, p. 11–17, 2018. doi: 10.1016/j.apacoust.2018.08.004. DOI: https://doi.org/10.1016/j.apacoust.2018.08.004

ALMEIDA, Gildean N. Análise de um metamaterial acústico do tipo labiríntico na absorção sonora de baixas frequências. Dissertação (Mestrado) — Universidade Federal de Santa Catarina, Florianópolis, SC, 2019. DOI: https://doi.org/10.55753/aev.v35e52.36

MAA, Dah-You. Microperforated-panel wideband absorbers. Noise control engineering journal, v. 29, n. 3, p. 77–84, 1987. doi: 10.3397/1.2827694. DOI: https://doi.org/10.3397/1.2827694

WANG, Chunqi; HUANG, Lixi; ZHANG, Yumin. Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern. Journal of Sound and Vibration, Elsevier, v. 333, n. 25, p. 6828–6842, 2014. doi: 10.1016/j.jsv.2014.08.009. DOI: https://doi.org/10.1016/j.jsv.2014.08.009

LI, Dengke; CHANG, Daoqing; LIU, Bilong. Enhanced low-to mid-frequency sound absorption using parallel-arranged perforated plates with extended tubes and porous material. Applied Acoustics, Elsevier, v. 127, p. 316–323, 2017. doi: 10.1016/j.apacoust.2017.06.019. DOI: https://doi.org/10.1016/j.apacoust.2017.06.019

BRAVO, Teresa; MAURY, Cédric; PINHÈDE, Cédric. Optimising the absorption and transmission properties of aircraft microperforated panels. Applied acoustics, Elsevier, v. 79, p. 47–57, 2014. Doi: 10.1016/j.apacoust.2013.12.009. DOI: https://doi.org/10.1016/j.apacoust.2013.12.009

COBO, Pedro; SIMÓN, Francisco. Multiple-layer microperforated panels as sound absorbers in buildings: A review. Buildings, Multidisciplinary Digital Publishing Institute, v. 9, n. 2, p. 53, 2019. Doi: 10.3390/buildings9020053. DOI: https://doi.org/10.3390/buildings9020053

MAREZE, Paulo H; BRANDÃO, Eric; FONSECA, William D’A; SILVA, Olavo M; LENZI, Arcanjo. Modeling of acoustic porous material absorber using rigid multiple micro-ducts network: Validation of the proposed model. Journal of Sound and Vibration, Elsevier, v. 443, p. 376–396, 2019. doi: 10.1016/j.jsv.2018.11.036. DOI: https://doi.org/10.1016/j.jsv.2018.11.036

BRANDÃO, Eric. Acústica de Salas: Projeto e Modelagem. 1. ed. São Paulo: Blucher, 2016. ISBN 9788521210061.

TANG, Yufan; XIN, Fengxian; HUANG, Lixi; LU, Tianjian. Deep subwavelength acoustic metamaterial for low-frequency sound absorption. EPL (Europhysics Letters), IOP Publishing, v. 118, n. 4, p. 44002, 2017. doi: 10.1209/0295-5075/118/44002. DOI: https://doi.org/10.1209/0295-5075/118/44002

JUNG, Jae Woong; KIM, Jae Eun; LEE, Jin Woo. Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range. Applied Physics Letters, AIP Publishing LLC, v. 112, n. 4, p. 041903, 2018. doi: 10.1063/1.5004605. DOI: https://doi.org/10.1063/1.5004605

WU, Xiaoxiao; FU, Caixing; LI, Xin; MENG, Yan; GAO, Yibo; TIAN, Jingxuan; WANG, Li; HUANG, Yingzhou; YANG, Zhiyu; WEN, Weijia. Low-frequency tunable acoustic absorber based on split tube resonators. Applied Physics Letters, AIP Publishing LLC, v. 109, n. 4, p. 043501, 2016. doi: 10.1063/1.495995. DOI: https://doi.org/10.1063/1.4959959

LI, Junfei; WANG, Wenqi; XIE, Yangbo; POPA, Bogdan-Ioan; CUMMER, Steven A. A sound absorbing metasurface with coupled resonators. Applied Physics Letters, AIP Publishing LLC, v. 109, n. 9, p. 091908, 2016. doi: 10.1063/1.4961671. DOI: https://doi.org/10.1063/1.4961671

ZHAO, Xiang; CAI, Li; YU, Dianlong; LU, Zhimiao; WEN, Jihong. A low frequency acoustic insulator by using the acoustic metasurface to a helmholtz resonator. AIP Advances, AIP Publishing LLC, v. 7, n. 6, p. 065211, 2017. doi: 10.1063/1.4989819. DOI: https://doi.org/10.1063/1.4989819

KRUSHYNSKA, AO; BOSIA, F; MINIACI, M; PUGNO, NM. Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control. New Journal of Physics, IOP Publishing, v. 19, n. 10, p. 105001, 2017. doi: 10.1088/1367-2630/aa83f3. DOI: https://doi.org/10.1088/1367-2630/aa83f3

LEBLANC, Alexandre; LAVIE, Antoine. Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation. The Journal of the Acoustical Society of America, Acoustical Society of America, v. 141, n. 6, p. EL538–EL542, 2017. doi: 10.1121/1.4984623. DOI: https://doi.org/10.1121/1.4984623

DONDA, Krupali; ZHU, Yifan; FAN, Shi-Wang; CAO, Liyun; LI, Yong; ASSOUAR, Badreddine. Extreme low-frequency ultrathin acoustic absorbing metasurface. Applied Physics Letters, AIP Publishing LLC, v. 115, n. 17, p. 173506, 2019. doi: 10.1063/1.5122704. DOI: https://doi.org/10.1063/1.5122704

GAN, Woon Siong. New Acoustics Based on Metamaterials. [S.l.]: Springer, 2017. ISBN 9811063761. DOI: https://doi.org/10.1007/978-981-10-6376-3_11

ZWIKKER, Cornelis; KOSTEN, Cornelis Willem. Sound absorbing materials. [S.l.]: Elsevier, 1949.

GROBY, J-P; HUANG, W; LARDEAU, A; AURÉGAN, Y. The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, AIP Publishing LLC, v. 117, n. 12, p. 124903, 2015. doi: 10.1063/1.4915115. DOI: https://doi.org/10.1063/1.4915115

JIMÉNEZ, Noé; GROBY, Jean-Philippe; PAGNEUX, Vincent; ROMERO-GARCÍA, Vicent. Iridescent perfect absorption in critically-coupled acoustic metamaterials using the transfer matrix method. Applied Sciences, Multidisciplinary Digital Publishing Institute, v. 7, n. 6, p. 618, 2017. Doi: 10.3390/app7060618. DOI: https://doi.org/10.3390/app7060618

JIMÉNEZ, Noe; HUANG, Weichun; ROMERO-GARCÍA, Vicent; PAGNEUX, Vincent; GROBY, J-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, AIP Publishing LLC, v. 109, n. 12, p. 121902, 2016. doi: 10.1063/1.4962328. DOI: https://doi.org/10.1063/1.4962328

ROMERO-GARCIA, Vicente; HLADKY-HENNION, Anne-Christine. Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency. [S.l.]: John Wiley & Sons, 2019. ISBN 1786303361. DOI: https://doi.org/10.1002/9781119649182

ZHANG, Chi; HU, Xinhua. Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability. Physical Review Applied, APS, v. 6, n. 6, p. 064025, 2016. doi: 10.1103/PhysRevApplied.6.064025. DOI: https://doi.org/10.1103/PhysRevApplied.6.064025

LI, Yong; ASSOUAR, Badreddine M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, AIP Publishing LLC, v. 108, n. 6, p. 063502, 2016. doi: 10.1063/1.4941338. DOI: https://doi.org/10.1063/1.4941338

WU, Fei; XIAO, Yong; YU, Dianlong; ZHAO, Honggang; WANG, Yang; WEN, Jihong. Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels. Applied Physics Letters, AIP Publishing LLC, v. 114, n. 15, p. 151901, 2019. Doi: 10.1063/1.5090355. DOI: https://doi.org/10.1063/1.5090355

LONG, Houyou; SHAO, Chen; LIU, Chen; CHENG, Ying; LIU, Xiaojun. Broadband near-perfect absorption of low-frequency sound by subwavelength metasurface. Applied Physics Letters, AIP Publishing LLC, v. 115, n. 10, p. 103503, 2019. doi: 10.1063/1.5109826. DOI: https://doi.org/10.1063/1.5109826

CHEN, Changru; DU, Zhibo; HU, Gengkai; YANG, Jun. A low-frequency sound absorbing material with subwavelength thickness. Applied Physics Letters, AIP Publishing LLC, v. 110, n. 22, p. 221903, 2017. doi: 10.1063/1.4984095. DOI: https://doi.org/10.1063/1.4984095

SHEN, Yuchen; YANG, Yanye; GUO, Xi-asheng; SHEN, Yong; ZHANG, Dong. Low-frequency anechoic metasurface based on coiled channel of gradient cross-section. Applied Physics Letters, AIP Publishing LLC, v. 114, n. 8, p. 083501, 2019. doi: 10.1063/1.5081926. DOI: https://doi.org/10.1063/1.5081926

WANG, Yang; ZHAO, Honggang; YANG, Haibin; ZHONG, Jie; WEN, Jihong. A space-coiled acoustic metamaterial with tunable low-frequency sound absorption. EPL (Europhysics Letters), IOP Publishing, v. 120, n. 5, p. 54001, 2018. doi: 10.1209/0295-5075/120/54001. DOI: https://doi.org/10.1209/0295-5075/120/54001

LI, Yong; LIANG, Bin; GU, Zhong-ming; ZOU, Xin-ye; CHENG, Jian-chun. Unidirectional acoustic transmission through a prism with near-zero refractive index. Applied Physics Letters, American Institute of Physics, v. 103, n. 5, p. 053505, 2013. doi: 10.1063/1.4817249. DOI: https://doi.org/10.1063/1.4817249

STINSON, Michael R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. The Journal of the Acoustical Society of America, Acoustical Society of America, v. 89, n. 2, p. 550–558, 1991. Doi: 10.1121/1.400379. DOI: https://doi.org/10.1121/1.400379

MAREZE, Paulo Henrique. Análise da influência da microgeometria na absorção sonora de materiais porosos de estrutura rígida. Tese (Doutorado) — Universidade Federal de Santa Catarina, Florianópolis, SC, 2013. Disponível em: https://repositorio.ufsc.br/bitstream/handle/123456789/106792/320039.pdf?sequence=1&isAllowed=y

RYOO, Hyeonbin; JEON, Wonju. Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence. Journal of Applied Physics, AIP Publishing LLC, v. 123, n. 11, p. 115110, 2018. doi: 10.1063/1.5017540. DOI: https://doi.org/10.1063/1.5017540

MAA, Dah-You. Potential of microperforated panel absorber. The Journal of the Acoustical Society of America, Acoustical Society of America, v. 104, n. 5, p. 2861–2866, 1998. doi: 10.1121/1.423870. DOI: https://doi.org/10.1121/1.423870

RAYLEIGH, J.W.S. The Theory of Sound, 2. Aufl., Bd. 1-2. [S.l.]: London: MacMillan & Co, 1926.

CRANDALL, Irving Bardshar. Theory of vibrating systems and sound. [S.l.]: D. Van Nostrand Company, 1926.

INGARD, Uno. On the theory and design of acoustic resonators. The Journal of the acoustical society of America, Acoustical Society of America, v. 25, n. 6, p. 1037–1061, 1953. Doi: 10.1121/1.190723. DOI: https://doi.org/10.1121/1.1907235

MELLING, Thomas Henry. The acoustic impendance of perforates at medium and high sound pressure levels. Journal of Sound and Vibration, Elsevier, v. 29, n. 1, p. 1–65, 1973. doi: 10.1016/S0022-460X(73)80125-7. DOI: https://doi.org/10.1016/S0022-460X(73)80125-7

FOK, VA. Doklady akademii nauk. [S.l.]: SSSR, 1941.

RZHEVKIN, Serge ̆ı Nikolaevich. A course of lectures on the theory of sound. [S.l.]: Pergamon Press;[distributed in the Western Hemisphere by Macmillan, New York], 1963.

YANG, Min; SHENG, Ping. Sound absorption structures: From porous media to acoustic metamaterials. Annual Review of Materials Research, Annual Reviews, v. 47, p. 83–114, 2017. doi: 10.1146/annurev-matsci-070616-124032. DOI: https://doi.org/10.1146/annurev-matsci-070616-124032

TANG, Yufan; REN, Shuwei; MENG, Han; XIN, Fengxian; HUANG, Lixi; CHEN, Tianning; ZHANG, Chuanzeng; LU, Tian Jian. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Scientific reports, Nature Publishing Group, v. 7, p. 43340, 2017. Doi: 10.1038/srep43340. DOI: https://doi.org/10.1038/srep43340

WANG, Chunqi; HUANG, Lixi. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. The Journal of the Acoustical Society of America, Acoustical Society of America, v. 130, n. 1, p. 208–218, 2011. doi: 10.1121/1.3596459. DOI: https://doi.org/10.1121/1.3596459

MERKEL, A; THEOCHARIS, G; RICHOUX, Olivier; ROMERO-GARCÍA, Vicente; PAGNEUX, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, AIP Publishing LLC, v. 107, n. 24, p. 244102, 2015. doi: 10.1063/1.4938121. DOI: https://doi.org/10.1063/1.4938121

STORN, Rainer; PRICE, Kenneth. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, Springer, v. 11, n. 4, p. 341–359, 1997. doi: 10.1023/A:1008202821328. DOI: https://doi.org/10.1023/A:1008202821328

VITALIY, Feoktistov. Differential evolution–in search of solutions. [S.l.]: Springer, New York, 2006. doi: 10.1007/978-0-387-36896-2. DOI: https://doi.org/10.1007/978-0-387-36896-2

GASPAR-CUNHA, António; TAKAHASHI, Ricardo; ANTUNES, Carlos Henggeler. Manual de computação evolutiva e metaheurística. [S.l.]: Imprensa da Universidade de Coimbra/Coimbra University Press, 2012. ISBN 9789892601502. DOI: https://doi.org/10.14195/978-989-26-0583-8

ORGANIZATION, International Standards. Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. [S.l.]: International Standards Organization Geneva, Switzerland, 1998.

KANDLIKAR, Satish G; SCHMITT, Derek; CARRANO, Andres L; TAYLOR, James B. Characterization of surface roughness effects on pressure drop in single-phase flow in mini-channels. Physics of Fluids, American Institute of Physics, v. 17, n. 10, p. 100606, 2005. doi: 10.1063/1.1896985. DOI: https://doi.org/10.1063/1.1896985

Capa - Otimização de um metamaterial acústico labiríntico para absorção sonora na faixa de frequências de 100–300 Hz (Acústica e Vibrações 52)

Publicado

2020-07-31

Cómo citar

ALMEIDA, G. N.; VERGARA, E. F.; BARBOSA, . L. R.; FARIAS, L. C. B. Otimização de um metamaterial acústico labiríntico para absorção sonora na faixa de frequências de 100–300 Hz. Acústica e Vibrações, [S. l.], v. 35, n. 52, p. 7–22, 2020. DOI: 10.55753/aev.v35e52.36. Disponível em: https://acustica.emnuvens.com.br/acustica/article/view/aev52_metamaterial. Acesso em: 18 dic. 2024.